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Abstract
A rotation number in the case of one-dimensional maps is introduced. As is
shown, this rotation number is equivalent to the already known rotation number
in the case of two-dimensional maps. The definition of the rotation number is
given in two steps. First, it is defined for periodic orbits inside a window of
organized motion (WOM). We show that in this case our definition coincides
with the definition of the over-rotation number. Then, our definition is further
generalized for chaotic orbits outside the WOMs. Thus, we obtain a unified
definition of the rotation number for the whole area of the chaotic zone of the
bifurcation diagram, having a number of useful applications. Namely, it can
be used as a tool to distinguish whether an orbit is contained within a WOM
or not, as a tool of numerical location of the bifurcation points, of the band
mergings, as well as of the boundary points of a WOM. Finally, a method of
numerical calculation of the percentage of the cumulative width of the WOMs
in every particular segment (chaotic band) of the chaotic zone is given.

PACS numbers: 05.45.−a, 02.30.Oz, 05.45.−a, 05.45.Ac

1. Introduction

One-dimensional maps are defined as xn+1 = f (xn;p), where p is the control parameter and
xn = f n(x0;p) is the nth iteration of this map with the initial point x0. A typical example is
the logistic map

f (xn;p) = p · xn · (1 − xn). (1)

It is well known that the bifurcation diagram of this map is separated into two main zones,
namely the main zone of order, for which p < p∞, and the main zone of chaos, where p > p∞
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with p∞ defined as the boundary point between these two zones, called Feigenbaum’s point,
(see, for example, Kapitaniak (2000)).

The main zone of order contains no chaotic attractors. It is characterized by point attractors
and point repellers. Any initial condition in this zone gives an orbit that tends asymptotically
to coincide with a point attractor, performing regular motion. For this reason these attractors
are also called asymptotically stable attractors. On the other hand, the main zone of chaos
contains chaotic attractors along the control parameter p, which are interchanged by windows
of values of p where point attractors and point repellers of various multiplicities appear. These
point attractors and point repellers form a secondary zone of order. Every branch of a multiple
point attractor ends up with a ‘tail’ of a secondary zone of chaos. Any initial condition in
these windows tends asymptotically to coincide with either a point attractor or the secondary
zone of chaos. Even when orbits tend asymptotically to chaotic attractors of the secondary
chaotic zones, they give a general impression of regular motion. For this reason these windows
are often called windows of organized motion or WOMs, for short. (Note that within a WOM
the secondary zones of order and chaos reproduce in smaller scales, in a ‘miniature’, the whole
topology of the bifurcation diagram. See, for example, Peitgen et al (1992), Alligood et al
(1996)).

Throughout this paper, the terms zones of order and chaos refer to the main ones,
i.e. those of the main bifurcation diagram, not the respective secondary zones inside the
WOMs. The topology of the zone of order in the bifurcation diagram is characterized by
asymptotically stable periodic attractors with period N to be given by multiples of 2, that
is f N(x;p) = x,N = 2k,∀ k ∈ ℵ, where ℵ is the set of physical numbers. This general
property of the zone of order of the bifurcation diagram of any one-dimensional map has
been shown by Li and Yorke (1975). The arrangement of these attractors with increasing p is
described as the period-doubling cascade, in which two new branches out of an initial branch
appear and the period doubles.

The values of p, at which the subsequent bifurcations occur, are called bifurcation points
p0, p1, p2, . . . , pk, . . . , p∞. In the interval (pk, pk+1) only attractors of period 2k can be realized,
therefore 2k branches appear as a function of p, one for each iteration. The serial number k is
called generation of these branches.

Asymptotically stable periodic attractors appear also within WOMs in the zone of chaos.
Their period N is not necessarily given by multiples of 2, that is f N(x;p) = x,N(� 3) ∈ ℵ.
They are often called tangent attractors, because their first branch begins by tangent
bifurcation. In a tangent bifurcation a pair of stable and unstable periodic orbits (attractor
and repeller respectively) of multiplicity N appears abruptly out of chaos (for further detail
see Guckenheimer and Holmes (1997)). The multiplicity N is often called the period of the
WOM.

In addition, referring to the periodic attractors with Nth multiplicity, we mean the
asymptotically stable periodic orbits of a period N.

The onset of a particular WOM of a period N occurs at a critical value of the control
parameter p = wN,1, where chaos is abruptly replaced by a tangent attractor with multiplicity
N. Furthermore, as p increases inside the WOM, every one of the N branches of the Nth
multiplicity attractor evolves to a secondary bifurcation diagram, producing as a whole N
miniatures of the main diagram, as mentioned above. These N miniatures end up at another
critical value of p = wN,2, where the corresponding secondary chaotic zones are abruptly
replaced by the extended chaos of the main diagram. On the left-hand side of each WOM,
p < wN,1, and for values of p quite close to wN,1, the orbits (although they are chaotic) present
segments with quasi-organized motion with the period quite close to the period of the WOM.
This effect is known as intermittency. Then again, on the right-hand side of each WOM,
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Figure 1. Sketch of a chaotic zone. The doubling of CBs, as p decreases, and their binary labelling
system is shown. The WOM of period 3 with its boundary values, w3,1 and w3,2, is shown for
the SCB. The generation, k, and the band mergings, p = Qk , are also indicated (in the case of
the logistic map: Q0 = 4, Q1 = 3.678 573 510 428 320 . . . , Q2 = 3.592 572 184 106 979 . . . ,

Q3 = 3.574 804 938 759 209 . . . , etc).

p > wN,2, and for values of p quite close to wN,2, the orbits present segments of motion that
mimics approximately the motion on the secondary chaotic zones of the WOM. This effect is
known as crisis. (See, for example, Kapitaniak (2000), Lichtenberg and Lieberman (1992),
Peitgen et al (1992), Post et al (1989).) The width of the WOM is measured by the difference
�pw = wN,2 − wN,1. In the schematic representation of figure 1, an illustration of the WOM
of period 3 with its boundary values, w3,1 and w3,2, is demonstrated.

The chaotic zone of the main bifurcation diagram can be described by sections
named chaotic bands (CBs). Schematically, the sequence of the CBs in the chaotic zone
is shown in figure 1. In this figure, a single chaotic band (SCB) is formed in the interval
Q1 � p � Q0 = 4. For Q2 � p � Q1, two new CBs are formed, indicated as CB(0) and
CB(1). At p = Q1, the SCB is split into these two CBs. Similarly, at p = Q2, CB(0) is
split into CB(00) and CB(01), while CB(1) is split into CB(10) and CB(11). This procedure
is repeated in the same manner for every CB that follows. A point as p = Q1 at which
splitting or merging of CBs occurs is called band merging. The binary system is used to label
these CBs, i.e. CB(0), CB(1), CB(00), CB(01), CB(10), CB(11) and so on (Lichtenberg and
Lieberman 1992, Peitgen et al 1992). The interval of the chaotic zone between Qk+1 and Qk

includes 2n CBs. The serial number k is called generation of the CBs and the period in the
interval (Qk+1, Qk) is 2k.

The procedure of chaotic bands splittings or mergings is the same for any unimodal
one-dimensional map. Unimodal maps constitute a broad category of one-dimensional maps
defined on the interval [0, 1], which have a differentiable maximum and fall off monotonically
on both sides. These maps are characterized by a ‘structural universality’, i.e. the infiniteness
of WOMs appears with the same arrangement in all the CBs (Geisel and Nierwetberg 1981,
Guckenheimer 1979, Metropolis et al 1973, Schuster 1989). In the case of the logistic map,
the chaotic zone of the main bifurcation diagram lies in the interval p∞ � p � 4 and the
mentioned procedure is illustrated in figure 1.
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(a) (b) (c)

Figure 2. (a) The route of the orbit passing through all the three branches of the tangent attractor
inside the WOM of period 3 located at p = w3,1 = 3.828 43 . . . for the SCB of the logistic map.
(b) The respective sketch in the circular representation, where an ascent ‘a’ is a counterclockwise
rotation, while a descent ‘d’ is a clockwise rotation, and (c) the descent is interpreted as a
counterclockwise rotation.

In the zone of order we have the doubling of the branches, as p increases, while in the
zone of chaos we have a similar doubling of CBs, as p decreases, forming a symbolic mirror
symmetry around the Feigenbaum’s point, p∞ = Q∞.

The whole analysis of this paper can be applied in the case of any unimodal one-
dimensional map. Nevertheless, all the numerical results presented in this dissertation
correspond to the logistic map.

In section 2 the definition of the rotation number in one-dimensional maps is given, either
for orbits inside a WOM or for chaotic orbits outside WOMs. The dependence of the rotation
number on the control parameter p is also discussed. We present two alternative methods of
investigating whether an orbit is contained in a WOM or not. In section 3 further applications
of the rotation number are presented, such as the numerical location of the bifurcation points,
of the band mergings, as well as of the boundary points of a WOM. In addition, we present
a method of numerical calculation of the percentage of the cumulative width of the WOMs
inside a CB. Finally, a summary of conclusions is given in section 4.

2. The rotation number

2.1. Definition of a rotation number for periodic orbits within WOMs

Consider an orbit inside the WOM of period 3. Let the control parameter p belong to the first
three branches of generation k = 0 of the secondary zone of order, i.e. before the doubling
bifurcation of the tangent attractor of multiplicity 3. It is interesting to study in which way
the orbit visits all the three branches of the attractor. For the WOM of period 3 this route is
simple as is shown below.

Let u be the separation between two successive branches along x (being a constant for
simplicity). We consider the highest branch (the branch with the largest value of x) being the
initial point of an orbit, labelled by 3 in figure 2(a). We choose as starting time the iteration
n = 103. In the next iteration (n = 104), the orbit falls to the lowest branch 1 by a descent
of size 2 · u. Then it continues with an ascent of size 1 · u to the attractor 2 (n = 105), and
with an ascent of size 1 · u back to the highest branch 3 (n = 106). The step of time, given by
iteration, specifies that the reverse procedure, i.e. descents from 3 to 2 to 1 and then an ascent
to 3, is not the case.

Furthermore, the three branches can be interpreted as points on a circle separated by equal
arcs of angle u = �θ3 = 2π/3. Thereafter, the orbit can be represented as a motion on a
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circle, figure 2(b), where an ascent is a counterclockwise rotation by an angle of size �θ3,
while a descent is a clockwise rotation by an angle of size 2 · �θ3.

The above descent can also be interpreted as a counterclockwise rotation by the
supplementary angle 2π − 2 · �θ3. Thus, by this representation the orbit describes constantly
a uniform counterclockwise circular motion.

In the WOM of period 3 the orbit describes one complete cycle after three iterations (equal
to the number of branches, i.e. the attractor multiplicity), figure 2(c). As we show below, the
number of the complete cycles described by the orbit in one period of a WOM, is equal to the
number of the descents that occur in the same period.

Generally, in a WOM of period N (tangent attractor of multiplicity N), the orbit describes
a total number of l descents and a total number of m ascents, so that N = l + m.

Since after completing a period, the orbit comes back to the initial branch, it follows that
l∑

i=1

(−�θdes,i ) +
m∑

j=1

(�θasc,j ) = 0, (2)

where �θdes,i denotes the clockwise angle of the orbit’s rotation during the ith descent and
�θasc,j denotes the counterclockwise angle during the jth ascent.

If we replace the clockwise rotation angle �θdes,i of a descent by an equivalent
counterclockwise angle 2π − �θdes,i , i.e.

−�θdes,i → 2π − �θdes,i , (3)

the total sum of the angles, �, becomes

� =
l∑

i=1

(2π − �θdes,i ) +
m∑

j=1

�θasc,j =
l∑

i=1

(2π) +
l∑

i=1

(−�θdes,i ) +
m∑

j=1

�θasc,j = 2π · l.

(4)

Thus, we have shown that, after N periods the orbit describes in its circular representation
a total angle � = 2π · l, equal to l complete cycles, i.e. a number l of cycles equal to the
number of descents. Throughout, the number l is denoted by Des(N).

Therefore, for every WOM of period N, a rational rotation number, ω, can be defined as

ω = Des(N)

N
. (5)

Hence, for the case of the WOM of period 3, the rotation number is equal to ω = 1/3.
As another example, consider the WOMs of period 5. In each CB there are three such

WOMs, having the following arrangement: two of them lie next to the WOM of period 3, one
in each side. The third one appears for greater values of the control parameter, lying on the
right-hand side of the WOM of period 4.

Figure 3 shows the circulation of the orbit in every one of the three WOMs of period 5
and their respective description in the circular representation. Both of these WOMs which are
next to the WOM of period 3 have a rotation number equal to ω = 2/5, whereas the third
WOM of period 5 has a rotation number equal to ω = 1/5.

The idea of using the number of descents as a detection tool has been also applied by
Adamopoulos et al (1997). Nevertheless, in our analysis we use this idea as a starting point
for the definition of the rotation number in one-dimensional maps.

2.2. A generalized definition of the rotation number

It is remarkable that the above definition of the rotation number can be directly derived from
the more general definition of the rotation number in two-dimensional maps.
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(a)

(b)

(c)

Figure 3. The route of the orbit passing through all the branches of the tangent attractor of
multiplicity 5 inside the three WOMs of period 5 for the SCB of the logistic map. Their
respective description in the circular representation is also illustrated. The three WOMs of
period 5 are arranged as follows: two of them lie next to the WOM of period 3, one in each
side, located at p = w5(a),1 = 3.738 18 . . . (a) and p = w5(b),1 = 3.905 57 . . . (b), respectively,
with the same rotation number, equal to ω = 2/5. The third one appears for greater values
of the control parameter, lying on the right-hand side of the WOM of period 4, located at
p = w5(c),1 = 3.990 26 . . . , with a rotation number equal to ω = 1/5 (c).

Let �rk and �rk+1 be the position vectors of two successive consequents of an orbit (either
regular or chaotic) in a two-dimensional map. The origin of the vectors is located at a fixed
point of the map. Then, the rotation number, νθ , is defined as

νθ = 1

2π
· lim

N→∞
1

N

N∑
k=1

θk, (6)

where θk is the rotation angle, that is the angle between the vectors �rk and �rk+1, and N is the
number of iterations.

If (6) is applied in the form

νθ = 1

2π
· 1

N

N∑
k=1

θk, (7)

where N is the period of a periodic orbit, and the total angle of rotation,
∑N

k=1 θk , is replaced
by � = 2π · Des(N), we end up with the definition (5).

In Voglis and Efthymiopoulos (1998), (6) has been generalized so that it can be used
even in the case of chaotic motion. In this case, νθ represents an angular moment that can be
expressed by the integral

νθ = 1

2π
·
∮

θ · S(θ) dθ. (8)
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Here S(θ) is the distribution density of the values of angle θ , defined as

S(θ) = dN(θ)

N dθ
, (9)

where dN(θ) is the number of values of θ in the interval (θ, θ + dθ) after N iterations. S(θ) is
called the angular dynamical spectrum and for large values of N it becomes invariant along an
orbit either regular or chaotic. In the case of regular motion the rotation number νθ converges
as 1/N (Voglis and Efthymiopoulos 1998). In the case of chaotic motion it has been shown
that the spectrum S(θ) converges to a frozen form as N increases with the law 1/

√
N (Voglis

et al 1999). This property is transferred to the rotation number νθ .
This means that a rotation number can be defined even in the case of chaotic orbits. Thus,

the definition of a rotation number in one-dimensional maps can be generalized as follows:

ω = lim
N→∞

Des(N)

N
. (10)

This definition leads to the same convergent properties of ω as νθ in two-dimensional
maps. Indeed, we have checked that the difference of the evaluated rotation number ω(N)

from the limit ω∗ = ω(N → ∞), that is �ω(N) = |ω(N) − ω∗|, varies as �ω ∝ 1/
√

N for
chaotic orbits outside a WOM, while as �ω ∝ 1/N for an orbit inside a WOM.

Namely, we consider the n intervals of N iterations each, i.e.

[0 − N ], [N − 2N ], [2N − 3N ], . . . , [(n − 1) · N − n · N ]. (11)

We calculate the rotation number ω(N) for each one of the n intervals, in order to construct
a time series for the rotation number. Then we calculate the histogram of these n values of
the rotation number for two different values of N, i.e. N1 = 1 × 104, N2 = 4 × 104, at
p = 3.86 lying on the right-hand side of the WOM of period 3 of the logistic map, as shown in
figure 4(a). The value of n used in this figure is n = 2 × 104.

This histogram approaches a Gaussian form with a dispersion δω varying as δω ∝ 1/
√

N

for chaotic orbits outside a WOM. This dispersion measures the thickness of the set of points
[p,ω(p,N)] shown in figure 4(b).

In figure 4(c) the evolution of the current values of �ω with N is demonstrated for a chaotic
orbit outside the WOM of period 3 and an orbit inside this WOM. The dotted lines give the
corresponding slopes −0.5 and −1 of the laws �ω ∝ 1/

√
N and �ω ∝ 1/N respectively. In

figure 4(d) the corresponding evolution of the dispersions δω with N is given, which follow
the same laws respectively.

There is a simple way of finding computationally the period N0 and the rotation number
ω0 of a WOM: Suppose that for a given value of the control parameter p the orbit belongs to
a WOM of which the period N0 we wish to find out. If the initial value of the orbit is x = x0

on the highest one of the N0 branches of the N0th multiplicity attractor (the branch with the
largest value of x) of the WOM, the values of ω(N), as the iterations N increase, behave as
follows:

• In an ascent:

Des(N + 1) = Des(N) ⇒ Des(N)

N
>

Des(N + 1)

N + 1
⇒ ω(N) > ω(N + 1), (12)

i.e. ω(N) decreases to ω(N + 1).
• In a descent:

Des(N + 1) = Des(N) + 1 ⇒ Des(N)

N
<

Des(N + 1)

N + 1
⇒ ω(N) < ω(N + 1), (13)

i.e. ω(N) increases to ω(N + 1).
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(a)

(b)

(c) (d )

Figure 4. The histogram of n = 2 × 104 values of the rotation number for two different
values of N, i.e. N1 = 1 × 104, N2 = 4 × 104, at p = 3.86, is shown in (a). The respective
dispersions measure the thickness of the set of points [p,ω(p, N)] shown in (b). Hereon, we set
the thickness to be of about three times the dispersion of the histogram. In (c) the evolution of �ω

with N is demonstrated for a chaotic orbit outside the WOM of period 3 and an orbit inside this
WOM. The dotted lines give the corresponding slopes −0.5 and −1 of the laws �ω ∝ 1/

√
N and

�ω ∝ 1/N respectively. In (d) the corresponding evolution of the dispersions δω with N, is given.
(c) and (d) are depicted in a logarithmic scale.

In addition, we can easily check (e.g. in terms of the phase diagram) that although
successive ascents are common, there are no successive descents at all.

Thus, we conclude that, if Nlm is the value of N just before any descent, then the value of
ω(Nlm) is a local minimum.

When we detect along the run of the orbit two local minima with Nlm,1 = N0 and
Nlm,2 = 2 · Nlm,1 = 2 · N0 then N0 is the period of the WOM, and the precise value of the
rotation number is ω0 = ω(N0) = ω(2 · N0).

Of course, this method is based on the assumption that the initial value of x = x0

is sufficiently closed to the highest branch of the WOM. This specific initial value can be
obtained if we start from an arbitrary initial value of x and select the maximum value of x

after a sufficient number N∗ of transient initial iterations.
We remark the fact that the rotation number for periodic orbits given by (5) coincides

with the definition of over-rotation number given by Bloch and Misiurewicz (1997). Indeed,
according to their definition, if Nsign is the number of times the quantity xn+1 − xn changes
sign, where the initial value of the orbit is considered to be on a periodic attractor (either
asymptotically stable or chaotic), then the over-rotation number is given by Nsign/2 divided
by the period of the orbit N. The number Nsign is equal to the total number of local maxima
and minima of the orbit occur in one period. Since the number of minima and maxima is the
same, we conclude that Nsign/2 gives the number of minima, or consequently, the number of
descents (we have already showed that every local minimum corresponds to a descent and
vice versa).
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Figure 5. The dependence of dω(p, N, dp) on dp near p = 3.86 (on the right-hand side of the
WOM of period 3) and for N = 108, demonstrated in a logarithmic scale. The noise term is of
about ≈10−4 and prevails for dp < 10−6. In the region 10−6 < dp < 10−3, the slope which
gives the fractal dimensionality is b = 0.594 ± 0.008. For dp > 10−3 large fluctuations appear,
because the value of p ±dp is sufficiently different from p = 3.86 and various WOMs of the local
area are taken into account in the calculation of dω(p, N, dp).

Furthermore, by defining the rotation number in a way parallel to the definition given in
the work of Voglis and Efthymiopoulos (1998), we were able to extend the definition in a
unified way for the whole area of the chaotic zone of the bifurcation diagram, either to orbits
inside a WOM (periodic or chaotic) or to (chaotic) orbits outside the WOMs.

2.3. The dependence of the rotation number on the control parameter p

As we have seen the rotation number varies in different ways with the number of iterations N
inside a WOM than outside. This property makes it a useful tool in distinguishing numerically
whether for a given value of p an orbit is inside or outside a WOM.

2.3.1. Inside a WOM. The value of ω(N), evaluated for N iterations inside a WOM, tends
to a fixed rational number, ω∗, that characterizes the WOM for all the values of the control
parameter p. In this case, we have ω(N) = ω∗ + δ/N , where δ is a constant independent of
p, depending only on the initial condition. Therefore, within a WOM the value of ω(N) is
independent of p.

2.3.2. Outside a WOM. For a chaotic orbit outside a WOM, the values of ω(N) depend on
p. We show this as follows.

For two neighbour values of the control parameter, p and p + dp, we define the difference
dω(p,N, dp) = |ω(p,N) − ω(p + dp,N)|.

In figure 5, we give an example of the dependence of dω(p,N, dp) on dp near p = 3.86
(on the right-hand side of the WOM of period 3 of the logistic map) and for N = 108. In
this figure, the dependence of dω on dp, flattens for dp smaller than about dp ≈ 10−6. This
is due to a threshold of noise proportional to 1/

√
N . Since N = 108, this noise is of about

≈10−4. For larger values of dp however (in the region 10−6 < dp < 10−3), dω is related
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to the fractal dimensionality of the curve ω(p) near the particular value of p = 3.86. The
value of the logarithmic slope b = d lg(dω)/d lg(dp)found in the particular example to be
b = 0.594 ± 0.008.

In general, one could write the average dependence of dω(p,N, dp) on dp as

dω(p,N, dp) = a(p) · dpb(p) + c(p)/
√

N. (14)

Thus, for N → ∞ and dp → 0 we have locally a fractal dimension of the curve ω(p) given
by b(p):

lim
N→∞
dp→0

{
lg[dω(p,N, dp)]

lg(dp)

}
= b(p). (15)

Since b(p) < 1 (the fractal dimension is less than the dimension of the embedding
space), the slope dω(p,N, dp)/dp cannot be defined, as dp → 0. Thus, the function
ω(p,N) is not differentiable outside the WOMs. However, it is continuous for N → ∞,
while dω(p,N, dp) → 0, as dp → 0.

Within a WOM, the parameters a(p), c(p) are zero and dω(p,N, dp) = 0.

2.3.3. Two criteria for the WOMs search. Based on the above properties of the rotation
number, we present two alternative methods of investigating whether an orbit belongs to a
WOM or not.

In the first method we calculate the values of the rotation number in the vicinity of the
given value of p. Thus, we can check, whether there is a plateau or not, around this particular
value of p.

The mathematical formulation of the corresponding criterion can be stated as follows.
If ∃ �p > 0, arbitrary small:

∀ ε > 0, ∃ N∗ ∈ ℵ : ‖ω(p + �p) − ω(p)‖ < ε, ∀N � N∗, (16)

then the orbit belongs to a WOM for the particular value of the control parameter p. N is
the number of iterations for which the rotation number is calculated, while N∗ is a minimum
number of iterations needed to make the specific WOM visible. Metaphorically, this can be
considered as the strength of our ‘magnifying glass’.

Since dω(p,N, dp) = 0 everywhere within a WOM, then ε is independent of �p.
Moreover, N∗ has to be sufficiently large so that it exceeds any transient initial phase, but also
larger than the period N0 of the WOM under detection. Obviously, the maximum value of �p

for which the criterion (16) holds, gives the width of the specific WOM,
∣∣wN0,2 − wN0,1

∣∣.
For orbits outside a WOM, the negative statement of criterion (16) can be postulated.
If ∀�p > 0:

∃ ε(�p) > 0, ∃ N∗ ∈ ℵ : ‖ω(p + �p) − ω(p)‖ � ε, ∀N � N∗, (17)

then the orbit does not belong to a WOM for the particular value of the control parameter p.
This method requires to run an orbit for at least two neighbouring values of p.
Alternatively, a second method based on a single run of the orbit of the given p, can

be used. Namely, constructing the time series of the rotation number for each one of the n
intervals of (11), we examine in which way the dispersion δω converges (see subsection 2.2).

2.3.4. The diagram of the rotation number depicted as a function of the control parameter p.
From the above analysis we conclude that the values of ω(N) plotted as a function of p, form
a plateau inside a WOM and a non-differentiable curve outside WOMs.
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(a) (b)

(c) (d )

Figure 6. (a) The diagram of ω(p) in the case of SCB for the logistic map. The plateaux of
the two WOMs with rotation numbers ω1 = 1/3 and ω2 = 2/5, described in figures 2 and 3(a)
respectively, are indicated. The magnifying plateaux of the two WOMs with rotation numbers
ω3 = 2/5 and ω4 = 1/5, described in figures 3(b) and (c) respectively, are shown in (b) and (d)
respectively. A plateau lying above the non-differentiable curve, corresponding to a WOM with
rotation number ω5 = 3/7, is shown in (c). All the values of ω are evaluated for N = 106 with
step δp = 10−6.

In figures 6(a)–(d) the values of ω evaluated for N = 106 are plotted as a function of p in
the range of SCB of the logistic map, with step δp = 10−6. In this figure, two plateaux can be
clearly seen. These plateaux correspond to the rotation numbers ω1 = 1/3 and ω2 = 2/5 of
the two WOMs discussed in subsection 2.1, in figures 2 and 3(a) respectively. The extension
of each of the two plateaux covers the whole range of p of the respective WOM. The other two
WOMs with the rotation numbers ω3 = 2/5 and ω4 = 1/5, described in figures 3(b) and (c)
respectively, are shown as plateaux in figures 6(b) and (d) respectively (under magnification).

The thick curve between the plateaux, shown in figure 6(a), is a numerical approximation
of the non-differentiable curve ω(p,N) formed by the chaotic orbits outside the WOMs. The
thickness of this line is of the order of 1/

√
N , as is shown in figures 4(a)–(b). In contrast, the

thickness of line along the plateau is zero (a pixel), independently of N.
The non-differentiable curve is interrupted by an infinite number of plateaux that can

lie on either side of this curve, corresponding to all rotation numbers of ω in the range
0 < ω < 1/2. As an example, in figure 6(c) a WOM with ω5 = 3/7 is easily discernible
(under magnification) as a plateau lying above the non-differentiable curve.

Inside the SCB, the non-differentiable curve starts from ω(p = Q1) = 1/2 and terminates
at ω(p = Q0) = 1/3. The value ω(p = Q1) = 1/2 is the same for any unimodal map: at
p = Q1, where the band merging of CB(0) and CB(1) appears, the number of descents is
equal to that of the ascents, thus the rotation number is 1/2. On the other hand, the value
ω(p = Q0) = 1/3 is particularly valid for the case of the logistic map.
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The non-differentiable curve is connected from both sides of plateaux, via an abrupt turn,
forming a kind of a ‘well’. In the case of plateaux which lie above the non-differentiable
curve, the ‘wells’ are inverted.

The formation of these ‘wells’ is a consequence of intermittency and crisis, which take
place for values of p slightly before and after each WOM, respectively. As the value of the
control parameter p is getting closer to the boundary values p = wN0,1 or p = wN0,2 of a
WOM of a period N0, the route of a chaotic orbit is getting more similar to the respective route
of a periodic orbit inside the WOM. Thus, it is characterized by a rotation number, which is
getting closer to the respective rotation number of the WOM. The non-differentiable curve is
getting nearer to the respective plateau of the WOM, and a well is formed.

Chaotic orbits outside any WOM are responsible for the non-differentiable behaviour of
the curve of ω(p). However, ‘invisible’ WOMs of large period exist at any rational value of
the rotation number.

It is well known that for each natural number m, there is at least one value of p where a
WOM with period m exists (Arrowsmith and Place 1992, Guckenheimer et al 1977). Thus,
the period of an infinite number of WOMs can be larger from any number of iterations we
choose, and accordingly these WOMs should be ‘invisible’, appearing as sparse points of
certain chaotic orbits.

Finally, we stress the fact that the respective diagram of ω(p) for other CBs is similar to
the SCB but realized on a different scale. Note that the period of the kth generation CBs is 2k,
so that the calculation of the rotation number must be considered for each (2k)th iteration, i.e.
the time unit should be taken as 2k iterations.

3. Further applications of the rotation number

3.1. Numerical calculation of the boundaries of a WOM, the bifurcation points and
the band mergings

The calculation of the boundary points of a WOM is carried out as follows: starting from an
initial value of the parameter pinit,0, lying on the left-hand side of the WOM under investigation,
we start increasing the parameter by a sufficiently small step δp0. When the rotation number
at a particular step first becomes equal to the rotation number of the investigated WOM, then
the value of the control parameter at the previous step, p = p̃, approaches the left boundary
of the referred WOM.

Similarly, we derive the right boundary by choosing an initial value of the parameter p0,
lying on the right-hand side of the WOM, and decreasing the parameter by the steps δp0.

The value of p at the boundary at a desirable accuracy can be achieved by repeating the
method with a smaller step δp1 < δp0 and starting from the initial value of the parameter
pinit,1 = p̃.

By this procedure we can scan the whole of a CB. Of course, one has to keep in mind that
there are more than one different WOMs characterized by the same value of rotation number.

We can use the same procedure for the calculation of the location of the bifurcation points.
Consider the initial value pinit,0 of the control parameter to be within the kth generation of
branches in the zone of order, i.e. pinit,0 ∈ (pk, pk+1). The period of the branches is 2k, thus
the rotation number is calculated after each (2k)th iteration. Increasing the parameter, the
desirable value of pk+1 is the corresponding value of the parameter as soon as the rotation
number becomes equal to 1/2. Similarly, for the calculation of the location of the band
mergings, we consider a value of the parameter within the p-interval of the kth generation
of CBs within the chaotic zone, i.e. pinit,0 ∈ (Qk+1,Qk). The rotation number is calculated
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after each (2k)th iteration, and as the parameter decreases, the desirable value of Qk+1 is the
corresponding value of the parameter, as soon as the rotation number becomes equal to 1/2.
A great advantage of these procedures is that only a few iterations are usually needed in order
to obtain sufficient calculations.

3.2. Numerical calculation of the percentage of the WOMs inside a CB

A direct application of the rotation number is the numerical approximation of the percentage
of the WOMs in a CB, i.e. the percentage of the cumulative width of the WOMs inside a CB.

Filtering out the WOMs is based on the property of the rotation number to be constant
inside each WOM, forming plateaux.

By sampling a large total number of Mtot points in the whole p-interval of a CB, we count
the number of MWOM points belonging to WOMs. Thus, the percentage of the WOMs in a CB
(symbolized by WP) is

WP = MWOM

Mtot
. (18)

The percentage, WP, in the case of SCB for the logistic map, is found to be WP =
0.1302 ± 0.0003. The total number of sampling points was Mtot = 2 × 105. The error
was estimated by comparing the value of the WP, calculated with two different samplings
Mtot = 1 × 105 and Mtot = 2 × 105. The number of the iterations needed for the rotation
number in order to converge was N = 1 × 106.

4. Conclusions

We have introduced a physical quantity in one-dimensional maps called rotation number,
which is applicable in a unified way, either to orbits inside a WOM (periodic or chaotic) or to
(chaotic) orbits outside the WOMs.

The rotation number for an orbit inside a WOM has the following three features:

• It converges with a dispersion δω, varying as δω ∝ 1/N .
• It can be obtained by a simple computational way by examining the local minima of ω(N)

just before any descent.
• The value of ω(N), evaluated for N iterations inside a WOM, characterizes the WOM for

all the values of the control parameter p. Thus, independently of N, the values of ω(N),
plotted as a function of p, form a plateau.

Respectively, the rotation number for a chaotic orbit outside a WOM is characterized by
the following two features:

• It converges with a dispersion δω, varying as δω ∝ 1/
√

N .
• Independently of N, the values of ω(N), plotted as a function of p outside the plateaux,

form a continuous, non-differentiable curve. It has a fractal structure with a fractal
dimension given locally by b(p) < 1 (15).

Some significant applications of the rotation number have been discussed. These include
(i) two criteria of whether an orbit is contained within a WOM or not; (ii) a method of
numerical calculation of the boundaries of a WOM, the locations of the bifurcation points and
the band mergings; (iii) a numerical calculation of the percentage of the orbits in a CB, which
belong to WOMs. In the case of SCB for the logistic map, this percentage is found to be
WP = 0.1302 ± 0.0003.
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